Skip to main content

LangChain

LangChain is an open-source framework for developing applications powered by large language models, enabling chaining of LLMs with external data sources and expressive workflows to build advanced generative AI solutions.

tip

We recommend logging in to Confident AI to view your LangChain evaluation traces.

deepeval login

End-to-End Evals

deepeval allows you to evaluate LangChain applications end-to-end in under a minute.

Configure LangChain

Create a CallbackHandler with a list of task completion metrics you wish to use, and pass it to your LangChain application's invoke method.

main.py
from langchain.agents import create_tool_calling_agent, AgentExecutor
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.tools import tool
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI

from deepeval.integrations.langchain import CallbackHandler

from deepeval.metrics import TaskCompletionMetric
task_completion_metric = TaskCompletionMetric()

@tool
def multiply(a: int, b: int) -> int:
"""Returns the product of two numbers"""
return a * b

llm = ChatOpenAI(model="gpt-4o-mini")

agent_prompt = ChatPromptTemplate.from_messages([
("system", "You are a helpful assistant that can perform mathematical operations."),
("human", "{input}"),
MessagesPlaceholder("agent_scratchpad"),
])

agent = create_tool_calling_agent(llm, [multiply], agent_prompt)
agent_executor = AgentExecutor(agent=agent, tools=[multiply], verbose=True)

# result = agent_executor.invoke(
# {"input": "What is 8 multiplied by 6?"},
# config={"callbacks": [CallbackHandler(metrics=[task_completion_metric])]}
#)

#print(result)
info

Only Task Completion is supported for the LangChain integration. To use other metrics, manually set up tracing instead.

Run evaluations

Create an EvaluationDataset and invoke your LangChain application for each golden within the evals_iterator() loop to run end-to-end evaluations.

main.py
from deepeval.dataset import EvaluationDataset, Golden

dataset = EvaluationDataset(goldens=[
Golden(input="What is 3 * 12?"),
Golden(input="What is 8 * 6?")
])

for golden in dataset.evals_iterator():
agent_executor.invoke(
{"input": golden.input},
config={"callbacks": [CallbackHandler(metrics=[task_completion_metric])]}
)

✅ Done. The evals_iterator will automatically generate a test run with individual evaluation traces for each golden.

View on Confident AI (optional)

note

If you need to evaluate individual components of your LangChain application, set up tracing instead.

Evals in Production

To run online evaluations in production, simply replace metrics in CallbackHandler with a metric collection string from Confident AI, and push your LangChain agent to production.

info

This will automatically evaluate all incoming traces in production with the task completion metrics defined in your metric collection.

result = agent_executor.invoke(
{"input": "What is 8 multiplied by 6?"},
config={"callbacks": [CallbackHandler(metric_collection="<metric-collection-name-with-task-completion>")]}
)