Vertex AI
You can also use Google Cloud's Vertex AI models, including Gemini or your own fine-tuned models, with DeepEval.
To use Vertex AI, you must have the following:
- A Google Cloud project with the Vertex AI API enabled
- Application Default Credentials set up:
gcloud auth application-default login
Command Line
Run the following command in your terminal to configure your deepeval environment to use Gemini models through Vertex AI for all metrics.
deepeval set-gemini \
--model-name=<model_name> \ # e.g. "gemini-2.0-flash-001"
--project-id=<project_id> \
--location=<location> # e.g. "us-central1"
The CLI command above sets Gemini (via Vertex AI) as the default provider for all metrics, unless overridden in Python code. To use a different default model provider, you must first unset Gemini:
deepeval unset-gemini
Python
Alternatively, you can specify your model directly in code using GeminiModel
from DeepEval's model collection. By default, model_name
is set to gemini-1.5-pro
.
from deepeval.models import GeminiModel
from deepeval.metrics import AnswerRelevancyMetric
model = GeminiModel(
model_name="gemini-1.5-pro",
project="Your Project ID",
location="us-central1"
)
answer_relevancy = AnswerRelevancyMetric(model=model)
Available Gemini Models
Below is a list of commonly used Gemini models:
gemini-2.0-pro-exp-02-05
gemini-2.0-flash
gemini-2.0-flash-001
gemini-2.0-flash-002
gemini-2.0-flash-lite
gemini-2.0-flash-lite-001
gemini-1.5-pro
gemini-1.5-pro-001
gemini-1.5-pro-002
gemini-1.5-flash
gemini-1.5-flash-001
gemini-1.5-flash-002
gemini-1.0-pro
gemini-1.0-pro-001
gemini-1.0-pro-002
gemini-1.0-pro-vision
gemini-1.0-pro-vision-001