Gemini
DeepEval allows you to directly integrate Gemini models into all available LLM-based metrics, either through the command line or directly within your python code.
Command Line
Run the following command in your terminal to configure your deepeval environment to use Gemini models for all metrics.
deepeval set-gemini \
--model-name=<model_name> \ # e.g. "gemini-2.0-flash-001"
--google-api-key=<api_key>
The CLI command above sets Gemini as the default provider for all metrics, unless overridden in Python code. To use a different default model provider, you must first unset Gemini:
deepeval unset-gemini
Python
Alternatively, you can specify your model directly in code using GeminiModel
from DeepEval's model collection. By default, model_name
is set to gemini-1.5-pro
.
from deepeval.models import GeminiModel
from deepeval.metrics import AnswerRelevancyMetric
model = GeminiModel(
model_name="gemini-1.5-pro",
api_key="Your Gemini API Key"
)
answer_relevancy = AnswerRelevancyMetric(model=model)
Available Gemini Models
Below is a list of commonly used Gemini models:
gemini-2.0-pro-exp-02-05
gemini-2.0-flash
gemini-2.0-flash-001
gemini-2.0-flash-002
gemini-2.0-flash-lite
gemini-2.0-flash-lite-001
gemini-1.5-pro
gemini-1.5-pro-001
gemini-1.5-pro-002
gemini-1.5-flash
gemini-1.5-flash-001
gemini-1.5-flash-002
gemini-1.0-pro
gemini-1.0-pro-001
gemini-1.0-pro-002
gemini-1.0-pro-vision
gemini-1.0-pro-vision-001